Quiz 10
Chemical Engineering Thermodynamics
March 31, 2016
10.3 The following mixture of hydrocarbons is obtained as one stream in a petroleum refinery on a mole basis: 5% ethane, 10% propane, $40 \% n$-butane, 45% isobutane. Assuming the shortcut K-ratio model: (a) compute the bubble point of the mixture at 5 bar ; (b) compute the dew point of the mixture at 5 bar ; (c) find the amounts and compositions of the vapor and liquid phases that would result if this mixture were to be isothermally flash vaporized at $30^{\circ} \mathrm{C}$ from a high pressure to 5 bar .
-For Part (a) use $\mathrm{T}=290^{\circ} \mathrm{K}$ and $\mathrm{T}=295^{\circ} \mathrm{K}$ for two trial temperatures and then extrapolate to the solution. Use the shortcut method. (For $295^{\circ} \mathrm{K}$ compare the calculated K ratios with the values obtained from the DePriester Chart.) INCLUDE THE MARKED CHART WITH YOUR ANSWER SHOWING YOUR WORK.
-For Part (b) use $310^{\circ} \mathrm{K}$ and $315^{\circ} \mathrm{K}$ for two trials and then extrapolate to the solution. Use the DePriester Chart rather than the shortcut method to save time. Extrapolate your answer from these two trials. INCLUDE THE MARKED CHART WITH YOUR ANSWER SHOWING YOUR WORK.
-For Part (c) use two trials at $\mathrm{V} / \mathrm{F}=0.2$ and at $\mathrm{V} / \mathrm{F}=0.05$. Use the DePriester Chart. Extrapolate between these two answers to find the V / F and L / F ratios. Then calculate for the solution the 4 x_{i} values and the $4 y_{i}$ values. (A total of 10 numbers are in the answer.) INCLUDE THE MARKED CHART WITH YOUR ANSWER SHOWING YOUR WORK.

$$
\begin{align*}
& K_{i}=\frac{P_{i}^{s a t}}{P} \text { or } y_{i} P=x_{i} P_{i}^{\text {sat }} \\
& K_{i}=\frac{P_{i}^{s a t}}{P} \approx \frac{P_{c, i} 10^{\frac{7}{3}}(1+\omega)\left(1-\frac{1}{T_{r, i}}\right)}{P} \text { Shortcut } K \text {-ratio } \\
& x_{i}=\frac{z_{i}}{1+(V / F)\left(K_{i}-1\right)}
\end{align*}
$$

$$
\begin{aligned}
& y_{i}=\frac{z_{i} K_{i}}{1+(V / F)\left(K_{i}-1\right)} \\
& \sum_{i} x_{i}-\sum_{i} y_{i}=\sum_{i}\left(x_{i}-y_{i}\right)=\sum_{i} D_{i}=0
\end{aligned}
$$

For a bubble-temperature calculation, writing $\sum_{i} y_{i}=1 \quad$ as $\quad \sum_{i} K_{i} x_{i}=1$ For a dew-temperature calculation, writing $\sum_{i} x_{i}=1$ as $\sum_{i}\left(y_{i} / K_{i}\right)=1$

$$
\sum_{i} x_{i}-\sum_{i} y_{i}=\sum_{i} D_{i}=\sum_{i} \frac{z_{i}\left(1-K_{i}\right)}{1+(V / F)\left(K_{i}-1\right)}=0
$$

${ }^{\circ} \mathrm{C} * 9 / 5+32={ }^{\circ} \mathrm{F} \quad 145 p s i a=1 \mathrm{MPa}$

PROPERTIES OF SELECTED COMPOUNDS

Heat capacities are values for ideal gas at 298 K and should be used for order of magnitude calculations only. See appendices for temperature-dependent formulas and constants.

ID Compound	$\begin{gathered} \boldsymbol{T}_{\boldsymbol{c}} \\ (\mathbf{K}) \end{gathered}$	$\begin{gathered} \boldsymbol{P}_{\boldsymbol{c}} \\ (\mathrm{MPa}) \end{gathered}$	ω	$\underset{\mathrm{g} / \mathrm{cm}^{3}}{\rho}$	$\boldsymbol{M W}$	$C_{P}{ }^{i g / R}$	$\begin{gathered} \delta \\ \left(\mathrm{J} / \mathrm{cm}^{3}\right)^{1 / 2} \end{gathered}$	$\begin{gathered} \alpha \\ \left(\mathrm{J} / \mathrm{cm}^{3}\right)^{1 / 2} \end{gathered}$	$\begin{gathered} \beta \\ \left(\mathbf{J} / \mathbf{c m}^{3}\right)^{1 / 6} \end{gathered}$
Aliphatics									
1 METHANE	190.6	4.604	0.011	0.29	16	4.30	11.7	0	0
2 ETHANE	305.4	4.880	0.099	0.43	30	6.31	13.5	0	0
3 PROPANE	369.8	4.249	0.152	0.58	44	8.85	13.1	0	0
4 n-BUTANE	425.2	3.797	0.193	0.60	58	11.89	13.5	0	0
5 ISOBUTANE	408.1	3.648	0.177	0.55	58	11.70	12.5	0	0
7 n-PENTANE	469.7	3.369	0.249	0.62	72	14.45	14.3	0	0
8 ISOPENTANE	460.4	3.381	0.228	0.62	72	14.28	13.9	0	0
9 NEOPENTANE	433.8	3.199	0.196	0.60	72	14.62	13.1	0	0
$11 n$-HEXANE	507.4	3.012	0.305	0.66	86	17.21	14.9	0	0
17 n -HEPTANE	540.3	2.736	0.349	0.68	100	19.95	15.3	0	0
27 n-OCTANE	568.8	2.486	0.396	0.70	114	22.70	15.5	0	0
27 ISOOCTANE	544.0	2.570	0.303	0.70	114	22.50	14.1	0	0
46 n -NONANE	595.7	2.306	0.437	0.71	128	25.45	15.6	0	0
56 n -DECANE	618.5	2.123	0.484	0.73	142	28.22	15.7	0	0
$64 n$-DODECANE	658.2	1.824	0.575	0.75	170	33.71	15.9	0	0
$66 n$-TETRADECANE	696.9	1.438	0.570	0.76	198	39.22	16.1	0	0
68 n-HEXADECANE	720.6	1.419	0.747	0.77	226	44.54	16.2	0	0

ANSWERS: Quiz 10
 Chemical Engineering Thermodynamics
 March 31, 2016

Problem 10.3a

Problem 10.3b

Problem 10.3c

$$
\begin{aligned}
& \Delta D=1.302 \\
& \Delta L / F=0.1 \\
& 0.95-(0.02) \frac{0.15}{0.101}=0.92=\frac{L}{F} \frac{V}{F}=0.08 \\
& 0.82 \\
& \text { Ansies L/F U/F } 2 \neq 5 \\
& L_{F}+V_{F}=1 \\
& x_{i} \text { 's } 8 \text { \# } \\
& y_{i} \text { s }
\end{aligned}
$$

(10.03) The following mixture of hydrocarbons ...

a) By short-cut vapor pressure eqn.
$\frac{y_{i}}{x_{1}}=K_{i} \equiv \frac{\left[10^{\wedge}\left[\frac{7}{3}\left(1+\omega_{i}\right)\left(1-\frac{1}{T_{2}}\right)\right]\right]}{P_{r j}}$
$y_{i}=x_{i} K_{i}$
Find T when $\sum y_{i} \equiv \sum x_{i} K_{i}=1$
For given liquid composition, at $P=0.5 \mathrm{MPa}$

$$
\text { Bubble point temperature }=293.376 \mathrm{~K}
$$

OR
By Antoine Vapor Pressure Equation,

$$
y_{i}=x_{i} \frac{P_{i}^{\text {ut }}}{P} ; P_{i}^{n v}=10^{\wedge}\left[A_{i}-\frac{B_{i}}{T+C_{i}}\right]
$$

Find T when $\sum y_{i}=1$
A_{i}, B_{i}, C_{i} from tabulated in appendix or ACTCOEFF.xls
bubble point temperature $=294.68 \mathrm{~K}$
b) Dew Point

Short-cut method: $x_{i}=\frac{y_{i}}{K_{i}}$
Find T when $\sum x_{i}=1$
$T_{\text {dex. } \mathrm{xr}}=312.479 \mathrm{~K}$
Dew pt. By Antoine Eqn, $x_{i}=y_{i} \frac{P}{P_{i}^{\omega w}}$.
Find T when $\sum x_{i}=1$
$T_{\text {stav }}=313.116 \mathrm{~K}$
c) Isothermal Flash

Shortcut

$$
\begin{array}{lll}
\text { L/F }=0.827 & \text { L/F } & \text { L/F }=0.852 \\
x=0.02047 & \text { ethane } & x=0.02336 \\
y=0.19122 & & y=0.20341 \\
& & \\
x=0.08305 & \text { propane } & x=0.085735 \\
y=0.18100 & & y=0.182122 \\
& & x=0.42751 \\
x=0.43173 & \text { n-butane } & y=0.24166 \\
y=0.24829 & &
\end{array}
$$

$$
\begin{array}{lll}
x=0.46475 & \text { iso-butane } & x=0.46340 \\
y=0.37949 & & y=0.37281
\end{array}
$$

N.B: Choose the initial guess for L/F as between zero and unity.

Summary of shortcut calculations:

Comparing with the PREOS, PREOS \Rightarrow : a) 298 K (b) 312 K (c) $\mathrm{L} / \mathrm{F}=874$, $\mathrm{K}=\{6.1,1,9,61, .83\}$

